Pengujian Pakis Kinca (Nephrolepis Cordifolia (L) C. Presl) Sebagai Inhibitor enzyim sitokrom sub time 2E1 Dengan Metode Doking
DOI:
https://doi.org/10.58794/jfarm.v2i2.680Keywords:
sitokrom P450, docking, eugenolAbstract
CYP450 adalah enzim yang terlibat dalam monooksigenasi beragam senyawa asing dan endogen. Dari 57 enzim manusia, mungkin sepertiga bertanggung jawab metabolisme xenobiotik, termasuk obat-obatan. Penelitian ini menggunakan metode docking untuk melihat potensi senyawa yang terkandung dari Nephrolepis Cordifolia sebagai inhibitor CYP2E1. Doking yang dilakukan menggunkan senyawa yang terkandung dari Nephrolepis Cordifolia. Metode yang digunakan dalam docking adalah rigid docking menggunakan software autodock4. Analisis data yang digunakan adalah adanya ikatan hidrogen dan enrgy Gibbs. Hasil dari penelitian ini yaitu energi terendah adalah β-sitosterol dengan energi Gibbs -8.233 kcal/mol. Ikatan yang terbentuk adalah ikatan hidrofob. benzyl butyl phthalate, β-ionone, oleanolic acid terjadiny ikatan hidrofob. Myristic acid membentuk ikatan hidrogen dengan HIS 109. Eugenol membentuk ikatan hidrogen dengan THR303. Kesimpulan senyawa yang berpotensi sebagai inhibitor CYP2E1 adalah Myristic acid dan Eugenol.
References
O. Sari, “ANALISIS POLIMORFISME CYP2D6*4 DAN CYP2D6*10 SEBAGAI METABOLIZER PRIMAKUIN DI RSUD JAYAPURA PAPUA INDONESIA,” Med. Kartika J. Kedokt. dan Kesehat., pp. 168–181, Mar. 2021, doi: 10.35990/mk.v4n2.p168-181.
G.-H. Lee et al., “Catalytic enhancements in cytochrome P450 2C19 by cytochrome b5,” Toxicol. Res., vol. 40, Jan. 2024, doi: 10.1007/s43188-023-00219-8.
P. Koroleva and V. Shumyantseva, “Comparative Analysis of Bioelectrocatalytic Cytochrome P450 3A4 Systems,” Biomed. Chem. Res. Methods, vol. 7, p. e00210, Feb. 2024, doi: 10.18097/BMCRM00210.
S. Burris-Hiday and E. Scott, “Allosteric Modulation of Cytochrome P450 Enzymes by the NADPH Cytochrome P450 Reductase FMN-containing domain,” J. Biol. Chem., vol. 299, p. 105112, Jul. 2023, doi: 10.1016/j.jbc.2023.105112.
M. Ishida et al., “Mechanism Underlying Conflicting Drug-Drug Interaction Between Aprepitant and Voriconazole via Cytochrome P450 3A4-Mediated Metabolism,” Yonago Acta Med., vol. 67, Jan. 2024, doi: 10.33160/yam.2024.02.004.
Y. Tateishi et al., “Proteomics, modeling, and fluorescence assays delineate cytochrome b5 residues involved in binding and stimulation of cytochrome P450 17A1 17,20-lyase,” J. Biol. Chem., vol. 300, p. 105688, Jan. 2024, doi: 10.1016/j.jbc.2024.105688.
E. Zaroug, T. Ahmed Albashir, A. Arbab, and M. Eltahir, “Updates on the Interactions of Herbs Constituents with Cytochrome P450 Drug Metabolizing Enzymes,” Curr. Enzym. Inhib., vol. 19, Jun. 2023, doi: 10.2174/1573408019666230601121657.
J. Jastrzębska and W. Daniel, “Cocaine-Induced Time-Dependent Alterations in Cytochrome P450 and Liver Function,” Int. J. Mol. Sci., vol. 24, p. 1632, Jan. 2023, doi: 10.3390/ijms24021632.
O. Pashanova, E. Zubko, R. Aringazina, and A. Yumashev, “The effects of vitamins C and E on the redox parameters of cytochrome P450 3A4,” Zeitschrift für Phys. Chemie, vol. 237, Oct. 2023, doi: 10.1515/zpch-2023-0303.
J. W. Guo and Y.-P. Cheng, “A Promising Approach to Treat Psoriasis: Inhibiting Cytochrome P450 3A4 Metabolism to Enhance Desoximetasone Therapy,” Pharmaceutics, vol. 15, p. 2016, Jul. 2023, doi: 10.3390/pharmaceutics15082016.
V. Shumyantseva, P. Koroleva, T. Bulko, T. Shkel, A. Gilep, and A. Veselovsky, “Approaches for increasing the electrocatalitic efficiency of cytochrome P450 3A4,” Bioelectrochemistry, vol. 149, p. 108277, Sep. 2022, doi: 10.1016/j.bioelechem.2022.108277.
F. Frati, G. Torello, and G. Cara, “Cytochrome p450 and innovative nutraceutical products,” J. Biol. Res. - Boll. della Soc. Ital. di Biol. Sper., Mar. 2024, doi: 10.4081/jbr.2024.11721.
J. Cheng et al., “Cloning and Functional Characterization of NADPH-Cytochrome P450 Reductases in Aconitum vilmorinianum,” Molecules, vol. 28, p. 7409, Nov. 2023, doi: 10.3390/molecules28217409.
S. Kaito et al., “Utility of human cytochrome P450 inhibition data in the assessment of drug-induced liver injury,” Xenobiotica, pp. 1–30, Feb. 2024, doi: 10.1080/00498254.2024.2312505.
F. Rwere, “The FMN ‘140s Loop’ of Cytochrome P450 Reductase Controls Electron Transfer to Cytochrome P450,” Int. J. Mol. Sci., vol. 22, Sep. 2021, doi: 10.3390/ijms221910625.
D.-R. Kim, S. Lee, and Y.-S. Kwak, “Unraveling the Role of Cytochrome P450 as a Key Regulator Lantipeptide Production in Streptomyces globisporus,” plant Pathol. J., vol. 39, pp. 566–574, Dec. 2023, doi: 10.5423/PPJ.OA.08.2023.0119.
S. Takeji et al., “Metabolism of testosterone and progesterone by cytochrome P450 2C19 allelic variants,” Biopharm. Drug Dispos., vol. 44, Oct. 2023, doi: 10.1002/bdd.2378.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 JFARM - Jurnal Farmasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JFARM - Pharmacy Journal provides open access to anyone, ensuring that the information and findings in the article are useful to everyone. This journal article's entire contents can be accessed and downloaded for free. In accordance with the Creative Commons Attribution-ShareAlike 4.0 International License.
JFARM - Pharmacy Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0