Potensi Aegiceras corniculatum (L.) Blanco sebagai inhibitor enzim HMGCoA reductase

Authors

  • Noor Annisa Rizkiyah Universitas Lambung Mangkurat
  • Elvina Astria Agutin Universitas Lambung Mangkurat
  • Samsul Hadi Unversitas Lambung Mangkurat

DOI:

https://doi.org/10.58794/jfarm.v2i2.678

Keywords:

A. corniculatum, docking, HMGCoA

Abstract

Peningkatan kadar kolesterol adalah risiko utama faktor penyakit arteri koroner. Penyakit ini merupakan masalah besar di negara-negara maju dan saat ini mempengaruhi 13 hingga 14 juta orang. Tanaman yang berpotensi dikembangkan  adalah Aegiceras corniculatum. Penelitian ini menggunaan metode docking. Software doking yang dipergunakan adalah Autodok4 pada mode rigid docking. Bahan yang dipergunakan dalam penelitian ini adalah senyawa yang terkandung dalam A. corniculatum yaitu Epigallocatechin, Gallocatechin, Epicatechin-3-Ogallate, Epicatechin, Quercetin ,Kaempferol, Isorhamnetin dan  Embelin. Visualisasi menggunakan Discovery studio. Analisis data menggunakan energi Gibbs dan adanya ikatan Hidrogen. Hasil skor docking Epicatechin-3-Ogallate dengan energi Gibbs -6.191 kcal/mol, terbuntuk ikatan hidrogen dengan GLY860, GLU 559 dan  ARG568. Isorhamnetin memiliki energi Gibbs -5.657 dan terbentuk ikatan hidrogen dengan residu HIS752, ASN 755 dan Glu 559. Quercetin memiliki energi GIBS -5.547 ketika berikata dengan enzim dan membentuk ikatan hidrogen dengan HIS752 dan GLU 559. Epicatechin membentuk ikatan hidrogen dengan GLU 559 dan ARG 568 sehingga diperoleh energi Gibbs sebesar -5.473. Berdasarkan penelitian yang dilakukan senyawa yang dari Aegiceras corniculatum yang berpotensi menghambat kerja enzim HGM CoA Reductase adalah Epicatechin-3-Ogallate.

References

P. Rinthong, P. Pulbutr, and C. Mudjupa, “Molecular docking studies of Triphala with catalytic portion of HMG-CoA reductase enzyme,” J. Herbmed Pharmacol., vol. 12, pp. 262–270, Mar. 2023, doi: 10.34172/jhp.2023.28.

C. Jenkinson, A. Podgorny, C. Zhong, and B. Oakley, “Computer-Aided, Resistance Gene-Guided Genome Mining for Proteasome and HMG-CoA Reductase Inhibitors,” J. Ind. Microbiol. Biotechnol., vol. 50, Dec. 2023, doi: 10.1093/jimb/kuad045.

F. Salabi and M. Baradaran, Identification and characterization of HMG-CoA reductase inhibitor in venom glands of different Iranian scorpion species using transcriptome analysi. 2023.

T. Tien, N. Ardiansyah, C. Sabandar, L. Kardin, and P. Aritrina, “Inhibition of HMG-CoA Reductase Activity by Kersen Leaves (Muntingia calabura L.) to Prevent Hypercholesterolemia: Inhibisi HMG-CoA Reduktase Menggunakan Ekstrak Daun Kersen (Muntingia calabura L) Untuk Mencegah Hiperkolesterolemia,” J. Farm. Galen. (Galenika J. Pharmacy), vol. 9, pp. 102–113, Mar. 2023, doi: 10.22487/j24428744.2023.v9.i1.16086.

G. Saputra, T. Budhy, M. Rahayu, and B. Santosa, “The Potential of Mangrove Stem Extract (Aegiceras corniculatum) on the Haematocrit Value,” J. Biosains Pascasarj., vol. 24, pp. 122–127, Dec. 2022, doi: 10.20473/jbp.v24i2.2022.122-127.

R. A. B. Tangkery, D. S. Paransa, and A. Rumengan, “Uji Aktivitas Antikoagulan Ekstrak Mangrove Aegiceras Corniculatum,” J. Pesisir dan Laut Trop., vol. 1, no. 1, 2013, doi: 10.35800/jplt.1.1.2013.1278.

N. Hu, L. Wei, Y. Zhou, M. Wu, and J. Feng, “Restoration of Aegiceras corniculatum Mangroves May Not Increase the Sediment Carbon, Nitrogen, and Phosphorus Stocks in Southeastern China,” Forests, vol. 15, p. 149, Jan. 2024, doi: 10.3390/f15010149.

F. Fatchiyah, H. Meidinna, and E. Suyanto, “The cyanidin-3-O-glucoside of Black Rice inhibits the interaction of HMG-CoA and HMG-CoA Reductase: three-and two-dimension structure,” J. Phys. Conf. Ser., vol. 1665, p. 12005, Oct. 2020, doi: 10.1088/1742-6596/1665/1/012005.

A. Setiawansyah, M. Arsul, N. Adliani, and L. Wismayani, “HMG-CoA Reductase Inhibitory Activity Potential of Iota-, Kappa-, and Lambda-carrageenan: A Molecular Docking Approach,” ad-Dawaa J. Pharm. Sci., vol. 5, pp. 17–25, Dec. 2022, doi: 10.24252/djps.v5i2.32721.

J. Junaidin, D. Lestari, M. Fariez Kurniawan, and N. Khairul Ikram, “Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of HMG-CoA reductase inhibitors,” Informatics Med. Unlocked, vol. 32, p. 101063, Aug. 2022, doi: 10.1016/j.imu.2022.101063.

W. Yuan et al., “Effect and mechanism of HMG-CoA reductase inhibitor on the improvement of elderly essential hypertension-induced vascular endothelial function impairment based on the JAK/STAT pathway,” Diagn. Pathol., vol. 18, Sep. 2023, doi: 10.1186/s13000-023-01393-x.

T. Wresdiyati, M. C. Papilaya, S. R. Lailia, M. Darawati, S. Sadiah, and M. Astawan, “3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitory activity of Indonesian Cajanus cajan leaves and Zingiber officinale extracts,” Food Res., vol. 7, pp. 139–144, Jun. 2023, doi: 10.26656/fr.2017.7(S1).26.

J. Zhou et al., “An acetate-independent pathway for isopropanol production via HMG-CoA in Escherichia coli,” J. Biotechnol., vol. 359, Sep. 2022, doi: 10.1016/j.jbiotec.2022.09.011.

A. Rizqi, D. Oktaviani, V. Aprillia, T. Najmia, E. Suhartono, and N. Komari, “Hesperidin Interaction with HMG-CoA-Reductase Enzyme in Hypercholesterolemia: A Study in Silico,” Berk. Kedokt., vol. 17, pp. 173–178, Oct. 2021, doi: 10.20527/jbk.v17i2.11692.

B. Divya et al., “Pharmacophore Identification of Alternative HMG-CoA Reductase Inhibitor: A Computational Approach,” vol. 12, pp. 186–190, Oct. 2023.

Downloads

Published

2024-04-16

Issue

Section

Articles