Machine Learning Pengklasifikasikan Performa Karyawan Direct Sales Force Kartu Prabayar Menggunakan Metode Random Forest Classifier
DOI:
https://doi.org/10.58794/jekin.v4i3.864Keywords:
Sistem Pendukung Kinerja, Machine Learning, Random Forest Classifier, OSEMN, KlasifikasiAbstract
Penelitian ini menggunakan Machine Learning, khususnya Random Forest Classifier, untuk mengklasifikasikan karyawan direct sales force menjadi empat kategori: Star, Hard Worker, Problem Employee, dan Dead Wood. Data penjualan bulan Juni 2023 dari PT Indosat Tbk Semarang digunakan dalam penelitian ini, dengan mengimplementasikan framework OSEMN untuk analisis data. Lima atribut variabel yang dipertimbangkan dalam model ini adalah quality serious customer, quality high value customer, total penjualan, total penjualan site, dan total kerja per bulan. Hasil penelitian ini adalah pengembangan sistem informasi dashboard yang memungkinkan manajer sumber daya sales untuk melihat dan menginterpretasikan hasil pengklasifikasi dengan efisien. Evaluasi model menunjukkan tingkat akurasi sebesar 98% dengan RMSE 0.1085, yang menegaskan efektivitas model dalam mengklasifikasikan karyawan direct sales force. Penelitian ini tidak hanya mengatasi kelemahan pendekatan sebelumnya, tetapi juga memberikan wawasan mendalam dalam analisis performa karyawan menggunakan teknik data analitik. Sistem informasi dashboard yang dihasilkan dapat secara signifikan meningkatkan proses pengambilan keputusan terkait manajemen kinerja karyawan, memungkinkan PT Indosat Tbk Semarang untuk mengoptimalkan strategi penjualan kartu prabayar mereka.
Downloads
References
L. K. Kathuni and N. Galo Mugenda, “Direct Sales Strategy Applied by Commercial Banks in Kenya,” 2012. [Online]. Available: www.ijbhtnet.com
J. Bell, “What Is Machine Learning?,” in Machine Learning and the City, Wiley, 2022, pp. 207–216. doi: 10.1002/9781119815075.ch18.
Shaveta, “A review on machine learning,” International Journal of Science and Research Archive, vol. 9, no. 1, pp. 281–285, May 2023, doi: 10.30574/ijsra.2023.9.1.0410.
D. Chopra and R. Khurana, “Introduction To Machine Learning,” in Introduction to Machine Learning with Python, BENTHAM SCIENCE PUBLISHERS, 2023, pp. 15–29. doi: 10.2174/9789815124422123010004.
M. O. K. Mendonça, S. L. Netto, P. S. R. Diniz, and S. Theodoridis, “Machine learning,” in Signal Processing and Machine Learning Theory, Elsevier, 2024, pp. 869–959. doi: 10.1016/B978-0-32-391772-8.00019-3.
T. Chamorro-Premuzic, “Machine Learning,” Character Lab Tips, Apr. 2023, doi: 10.53776/tips-gratitude-machine-learning.
K. Thakur, A.-S. K. Pathan, and S. Ismat, “Machine Learning Technology,” in Emerging ICT Technologies and Cybersecurity, Cham: Springer Nature Switzerland, 2023, pp. 79–124. doi: 10.1007/978-3-031-27765-8_3.
Advances in computer and electrical engineering book, “Classification,” 2023, pp. 83–106. doi: 10.4018/978-1-6684-4730-7.ch005.
“Classifications,” 2022, pp. 15–37. doi: 10.18356/9789210601405c006.
Y. I. Lobanovsky, “Classification is the Method of System Problems Detection,” South Florida Journal of Development, vol. 2, no. 3, pp. 3879–3889, Jul. 2021, doi: 10.46932/sfjdv2n3-006.
T. T. Teoh and Z. Rong, “Classification,” 2022, pp. 183–211. doi: 10.1007/978-981-16-8615-3_11.
U. R. Hodeghatta and U. Nayak, “Classification,” in Practical Business Analytics Using R and Python, Berkeley, CA: Apress, 2023, pp. 277–343. doi: 10.1007/978-1-4842-8754-5_9.
J. Valls-Conesa et al., “Random forest microplastic classification using spectral subsamples of FT-IR hyperspectral images,” Analytical Methods, vol. 15, no. 18, pp. 2226–2233, 2023, doi: 10.1039/D3AY00514C.
J.-L. Solorio-Ramírez, R. Jiménez-Cruz, Y. Villuendas-Rey, and C. Yáñez-Márquez, “Random forest Algorithm for the Classification of Spectral Data of Astronomical Objects,” Algorithms, vol. 16, no. 6, p. 293, Jun. 2023, doi: 10.3390/a16060293.
S. Nandi, “Credit Card Fraud Detection Using Random Forest Classification,” Int J Res Appl Sci Eng Technol, vol. 11, no. 6, pp. 2383–2390, Jun. 2023, doi: 10.22214/ijraset.2023.53990.
L. Budianti and Suliadi, “Metode Weighted Random Forest dalam Klasifikasi Prediksi Kelangsungan Hidup Pasien Gagal Jantung,” Bandung Conference Series: Statistics, vol. 2, no. 2, pp. 103–110, Jul. 2022, doi: 10.29313/bcss.v2i2.3318.
E. Purwanto and Nurmalitasari, “Prediksi Performa Mahasiswa Menggunakan Model Regresi Logistik,” Journal Derivat, vol. 9 No.2, pp. 145–152, 2022.
A. P. Kurniawan, E. B. Sadewa, R. Y. Pradana, and D. Hartanti, “SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA MENGGUNAKAN METODE AHP,” Majalah Ilmiah METHODA, vol. 12, no. 2, pp. 147–152, Aug. 2022, doi: 10.46880/methoda.Vol12No2.pp147-152.
Anggle Yohana, Sitepu Surianto, and Manurung Samuel VB H., “Sistem Klasifikasi Karyawan Yang Mendapatkan Kenaikan Gaji Dengan Metode Naïve Bayes Berbasis Web di PT. Tirta Madu Kepulauan Riau,” Methosisfo : Jurnal Ilmiah Sistem Informasi, vol. Vol. 3, No. 2, pp. 97–108, 2023.
M. S. Subagyo, “Rancang Bangun Sistem Informasi Dashboard sebagai Pendukung Pengambilan Keputusan Terkait Kinerja Karyawan PT. X,” 2022.
Ikhsan Nur Istyanto, “PENERAPAN OSEMN FRAMEWORK UNTUK KLASIFIKASI PROFIL,” 2023.
Syaukha Ahmad Risyad, “Data Set: Pengertian, Jenis, dan Contohnya,” https://dibimbing.id/blog/detail/pengertian-data-sheet-jenis-dan-contoh.
O. S. K. Bancin, “Sistem Pendukung Keputusan Pemilihan Kinerja Karyawan Terbaik Menggunakan Metode Simple Additive Weight,” Jurnal Teknik, Komputer, Agroteknologi Dan Sains, vol. 1, no. 1, pp. 1–9, May 2022, doi: 10.56248/marostek.v1i1.7.
T. A. Sumarto and F. P. Sihotang, “Sistem Pendukung Keputusan Penilaian Kinerja Pegawai Magang Bakti Decision Support System: Performance Assessment of Magang Bakti Employee,” 2021.
A. Wijaya Syam, Y. Andriyan, A. Pemerintahan, and I. Pemerintahan, “Analisis Kemampuan Kerja Terhadap Kinerja Karyawan Pada PT. Smartfren Telecom Makassar,” Politik Anggaran dan Adimistrasi Publik, vol. 3, no. 1, pp. 52–63, 2023.
A. A. Prayogi, M. Niswar, Indrabayu, and M. Rijal, “Design and Implementation of REST API for Academic Information System,” IOP Conf Ser Mater Sci Eng, vol. 875, no. 1, p. 012047, Jun. 2020, doi: 10.1088/1757-899X/875/1/012047.
M. Lathkar, “Getting Started with FastAPI,” in High-Performance Web Apps with FastAPI, Berkeley, CA: Apress, 2023, pp. 29–64. doi: 10.1007/978-1-4842-9178-8_2.
E. Purwanto, B. Prajadi, C. Utomo, and H. Permatasari, “PROTOTYPE SISTEM INFORMASI MONITORING PENJUALAN,” vol. 9, no. 4, pp. 761–768, 2022, doi: 10.25126/jtiik.202294880.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 JEKIN - Jurnal Teknik Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JEKIN-Journal of Informatics Engineering provides open access to anyone, ensuring that the information and findings in the article are useful to everyone. This journal article's entire contents can be accessed and downloaded for free. In accordance with the Creative Commons Attribution-ShareAlike 4.0 International License.
JEKIN-Journal of Informatics Engineering is licensed under a Creative Commons Attribution-ShareAlike 4.0