Implementasi Text Summarization Pada Review Aplikasi Digital Library System Menggunakan Metode Maximum Marginal Relevance
DOI:
https://doi.org/10.58794/jekin.v4i1.671Keywords:
Text summarization, MMR, NLP, Precision, Recall, F1Abstract
Peringkasan teks merujuk pada pembuatan rangkuman teks secara otomatis dengan pendekatan natural language processing (NLP). Text summarization dibutuhkan saat jumlah dokumen atau review yang akan dirangkum dalam jumlah yang banyak. Sebuah rangkuman yang dihasilkan dapat menjadi pengetahuan, masukan maupun saran untuk perbaikan/pengembangan berbagai aplikasi. Aplikasi Digital Library System merupakan sebuah mobile apps untuk layanan perpustakaan Universitas Negeri Medan (Unimed). Aplikasi tersebut memiliki banyak ulasan di berbagai platform. Tentu, rangkuman ulasan tersebut merupakan pengalaman pengguna dan dapat menjadi masukan untuk pengembangan versi terbaru. Namun menjadi tantangan jika seluruh ulasan pengguna dirangkum secara manual, karena akan memakan waktu yang lama. Penelitian ini bertujuan untuk menyediakan rangkuman atas ulasan mobile Apps tersebut dengan pendekatan peringkasan teks secara otomomatis. Algoritma yang digunakan dalam peringkasan teks di penelitian ini ialah Maximum Marginal Relevance (MMR) dan proses evaluasi menggunakan presisi, recall dan F1. Ulasan mobile apps diperoleh dari play store dan App Store. Ulasan akan melalui tahapan text pre-processing dengan bantuan library NLTK. Penelitian ini berhasil mengidentifikasi 30 review dengan nilai MMR tertinggi. Lebih lanjut, rangkuman ulasan yang disajikan merupakan rangkaian 10 ulasan dengan nilai MMR tertinggi. Rangkuman yang dihasilkan memiliki tingkat presisi sebesar 30.51%, recall sebesar 56.25%, dan skor F1 sebesar 39.56%.
Downloads
References
M. A. Zamzam, “SISTEM AUTOMATIC TEXT SUMMARIZATION MENGGUNAKAN ALGORITMA TEXTRANK,” MATICS, vol. 12, no. 2, 2020, doi: 10.18860/mat.v12i2.8372.
A. P. Widyassari et al., “Review of automatic text summarization techniques & methods,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 4. 2022. doi: 10.1016/j.jksuci.2020.05.006.
W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed, “Automatic text summarization: A comprehensive survey,” Expert Systems with Applications, vol. 165. 2021. doi: 10.1016/j.eswa.2020.113679.
N. K. Nagwani, “Summarizing large text collection using topic modeling and clustering based on MapReduce framework,” J Big Data, vol. 2, no. 1, 2015, doi: 10.1186/s40537-015-0020-5.
A. D. Dhawale, S. B. Kulkarni, and V. M. Kumbhakarna, “Experimental Evaluation and Approach of Enhancement in Generation of Automatic Unsupervised Extractive Text Summarization of Marathi Text By Using Machine Learning Algorithm,” Journal of Machine and Computing, vol. 2, no. 1, 2022, doi: 10.53759/7669/jmc202202004.
Y. K. Khor, C. W. Tan, and T. M. Lim, “Extractive Summarization on Food Reviews,” The Journal of The Institution of Engineers, Malaysia, vol. 82, no. 3, 2022, doi: 10.54552/v82i3.96.
V. Gulati, D. Kumar, D. E. Popescu, and J. D. Hemanth, “Extractive Article Summarization Using Integrated TextRank and BM25+ Algorithm,” Electronics (Switzerland), vol. 12, no. 2, 2023, doi: 10.3390/electronics12020372.
K. Ramani, K. Bhavana, A. Akshaya, K. S. Harshita, C. R. Thoran Kumar, and M. Srikanth, “An Explorative Study on Extractive Text Summarization through k-means, LSA, and TextRank,” in WiSPNET 2023 - International Conference on Wireless Communications, Signal Processing and Networking, 2023. doi: 10.1109/WiSPNET57748.2023.10134303.
A. A. Syed, F. L. Gaol, and T. Matsuo, “A survey of the state-of-the-art models in neural abstractive text summarization,” IEEE Access, vol. 9. 2021. doi: 10.1109/ACCESS.2021.3052783.
S. Gupta and S. K. Gupta, “Abstractive summarization: An overview of the state of the art,” Expert Systems with Applications, vol. 121. 2019. doi: 10.1016/j.eswa.2018.12.011.
C. Fang, D. Mu, Z. Deng, and Z. Wu, “Word-sentence co-ranking for automatic extractive text summarization,” Expert Syst Appl, vol. 72, 2017, doi: 10.1016/j.eswa.2016.12.021.
A. K. Yadav, M. Kumar, and A. Pathre, “Implemented Text Rank based Automatic Text Summarization using Keyword Extraction,” International Research Journal of Innovations in Engineering and Technology, vol. 04, no. 11, 2020, doi: 10.47001/irjiet/2020.411003.
R. Robiyanto, N. Nugraha, and I. Apriatna, “Peringkasan Teks Otomatis Berita Menggunakan Metode Maximum Marginal Relevance,” JEJARING : Jurnal Teknologi dan Manajemen Informatika, vol. 4, no. 1, 2019, doi: 10.25134/jejaring.v4i1.6712.
A. Kurniawan and Mohd. I. Humaidy, “Penerapan Algoritma Maximum Marginal Relevance Dalam Peringkasan Teks Secara Otomatis,” Bulletin of Data Science, vol. 1, no. 2, 2022.
Y. Yusniah, R. S. Asri, P. A. Parent, and N. Nuraina, “Analisis Konsep Kerjasama Eksternal Antar Perpustakaan di Perguruan Tinggi ,” Da’watuna: Journal of Communication and Islamic Broadcasting, vol. 3, no. 2, 2022, doi: 10.47467/dawatuna.v3i2.2467.
D. A. Louis, S. Rostianingsih, and L. W. Santoso, “Implementasi Text Summarization pada Review Aplikasi Super di Google Play Store Menggunakan Metode Maximum Marginal Relevance,” Jurnal Infra, vol. 10, no. 2, 2022.
Arie Atwa Magriyanti, “MAXIMUM MARGINAL RELEVANCE BERBASIS BOOLEAN MODEL PADA PERINGKASAN ARTIKEL BERITA PENDEK,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, vol. 1, no. 3, 2021, doi: 10.55606/juitik.v1i3.132.
Y. Ananda Kresna, I. Cholissodin, and Indriati, “Peringkasan Teks Menggunakan Metode Maximum Marginal Relevance terhadap Artikel Berita terkait COVID-19,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 9, 2021.
N. F. Saraswati, Indriati, and R. S. Perdana, “Peringkasan Teks Otomatis Menggunakan Metode Maximum Marginal Relevance Pada Hasil Pencarian Sistem Temu Kembali Informasi Untuk Artikel Berbahasa Indonesia,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 2, no. 11, 2018, doi: 10.1016/s1010-6030(01)00380-x.
C. Y. Lin, “Rouge: A package for automatic evaluation of summaries,” Proceedings of the workshop on text summarization branches out (WAS 2004), no. 1, 2004.
D. Glez-Peña, A. Lourenço, H. López-Fernández, M. Reboiro-Jato, and F. Fdez-Riverola, “Web scraping technologies in an API world,” Brief Bioinform, vol. 15, no. 5, 2013, doi: 10.1093/bib/bbt026.
M. A. Khder, “Web scraping or web crawling: State of art, techniques, approaches and application,” International Journal of Advances in Soft Computing and its Applications, vol. 13, no. 3, 2021, doi: 10.15849/ijasca.211128.11.
S. Das, “EStep: A novel method for semantic text summarization with web-based big data,” International Journal of Recent Technology and Engineering, vol. 8, no. 3, 2019, doi: 10.35940/ijrte.C5802.098319.
B. Baykara and T. Güngör, “Turkish abstractive text summarization using pretrained sequence-to-sequence models,” Nat Lang Eng, vol. 29, no. 5, 2023, doi: 10.1017/S1351324922000195.
Z. Rahimi and M. M. Homayounpour, “The impact of preprocessing on word embedding quality: a comparative study,” Lang Resour Eval, vol. 57, no. 1, 2023, doi: 10.1007/s10579-022-09620-5.
I. M. Karo Karo, M. Farhan, M. Fudzee, S. Kasim, and A. A. Ramli, “Karonese Sentiment Analysis: A New Dataset and Preliminary Result,” JOIV: International Journal on Informatics Visualization, vol. 6, no. 2–2, pp. 523–530, 2022, [Online]. Available: www.joiv.org/index.php/joiv
R. Yanuarti and H. A. Al Faruq, “Implementasi Text Summarization Pada Reading Comprehension Menggunakan Library Python,” Jurnal Aplikasi Sistem Informasi Dan Elektronika, vol. 2, no. 1, 2022.
E. J. Rifano, Abd. C. Fauzan, A. Makhi, E. Nadya, Z. Nasikin, and F. N. Putra, “Text Summarization Menggunakan Library Natural Language Toolkit (NLTK) Berbasis Pemrograman Python,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 2, no. 1, 2020, doi: 10.28926/ilkomnika.v2i1.32.
A. G. L. Babu and S. Badugu, “Extractive Summarization of Telugu Text Using Modified Text Rank and Maximum Marginal Relevance,” ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 22, no. 9, 2023, doi: 10.1145/3600224.
D. Delvin, D. Arisandi, and T. Sutrisno, “APLIKASI PERINGKASAN DOKUMEN MENGGUNAKAN METODE MAXIMUM MARGINAL RELEVANCE (MMR),” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 10, no. 1, 2022, doi: 10.24912/jiksi.v10i1.17820.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 JEKIN - Jurnal Teknik Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JEKIN-Journal of Informatics Engineering provides open access to anyone, ensuring that the information and findings in the article are useful to everyone. This journal article's entire contents can be accessed and downloaded for free. In accordance with the Creative Commons Attribution-ShareAlike 4.0 International License.
JEKIN-Journal of Informatics Engineering is licensed under a Creative Commons Attribution-ShareAlike 4.0