Pengembangan Arsitektur Edge Computing untuk Early Warning System (EWS) Banjir Berbasis Multi-Sensor Menggunakan Model Hybrid LSTM–Random Forest
DOI:
https://doi.org/10.58794/jekin.v6i1.2028Keywords:
Early Warning System, Deteksi Banjir, Multi-Sensor, Machine Learning, Internet of ThingsAbstract
Banjir merupakan bencana hidrometeorologi yang sering terjadi di wilayah tropis dan berdampak signifikan terhadap aspek sosial, ekonomi, serta infrastruktur. Penelitian ini mengembangkan Early Warning System (EWS) deteksi banjir berbasis multi-sensor dengan arsitektur Internet of Things (IoT) real-time yang mengintegrasikan pemrosesan edge dan cloud. Sistem diimplementasikan di [lokasi penelitian] selama empat bulan dengan total 12.480 dataset yang dikumpulkan setiap interval 5 menit. Parameter yang diamati meliputi tinggi muka air menggunakan sensor ultrasonik JSN-SR04T, curah hujan, suhu udara, dan kecepatan angin. Data diproses melalui pembersihan, normalisasi Min-Max, dan ekstraksi fitur deret waktu. Model Long Short-Term Memory (LSTM) digunakan untuk memprediksi pola temporal kenaikan muka air, sedangkan Random Forest digunakan untuk klasifikasi tingkat risiko banjir. Evaluasi dilakukan menggunakan skema train-test split 80:20 dan 5-fold cross-validation dengan hyperparameter tuning berbasis grid search. Hasil pengujian menunjukkan bahwa model LSTM memperoleh akurasi 91%, presisi 90%, recall 92%, dan F1-score 91%, sedangkan Random Forest mencapai akurasi 89%, presisi 88%, recall 90%, dan F1-score 89%. Model hybrid LSTM–Random Forest memberikan performa terbaik dengan akurasi 93%, presisi 92%, recall 94%, dan F1-score 93%. Sistem mampu memberikan peringatan dini 25–40 menit sebelum ambang batas banjir kritis tercapai dengan waktu respons kurang dari 3 detik. Kebaruan penelitian ini terletak pada integrasi multi-sensor hidrometeorologi dengan skema hybrid LSTM–Random Forest dalam arsitektur edge–cloud real-time yang meningkatkan akurasi prediksi sekaligus menurunkan latensi sistem peringatan dini banjir.
Downloads
References
DAFTAR PUSTAKA
M. P. Nabila et al., “WASPADA ! CURAH HUJAN YANG CUKUP TINGGI : SUMATERA,” vol. 2, no. 12, 2024.
M. Djaelani, “Pemanfaatan Citra Satelit untuk Deteksi Dini Potensi Banjir di Wilayah Pesisir Utilization of Satellite Imagery for Early Detection of Potential Floods in Coastal Areas Publisher : Universitas Muhammadiyah Palu,” vol. 8, no. 10, pp. 6503–6510, 2025, doi: 10.56338/jks.v8i10.8944.
A. Setiawan, R. Handoko, S. Kahfi, and G. Andriyanto, “PEMANFAATAN SISTEM PEMANTAUAN TINGGI MUKA AIR SUNGAI,” vol. 4, no. 2, pp. 28–34, 2025.
Z. A. Salam, A. Saiku, and J. L. Buliali, “Prediksi curah hujan dengan model hybrid xgboost- lstm berdasarkan data pengamatan permukaan,” vol. 10, no. 4, pp. 3731–3739, 2025.
M. I. Drilanang, Z. Indra, A. P. Walidin, and T. S. Warman, “Development of an Adaptive Hybrid Weather Prediction Model Based on Pattern Classification and Deep Learning for Disaster Mitigation in Indonesia,” vol. 4, no. 3, pp. 921–931, 2025.
M. A. R. Khan, M. A. Rouf, N. Sultana, and M. S. Akter4, “DEVELOPMENT OF A FOG COMPUTING-BASED REAL-TIME FLOOD PREDICTION AND EARLY WARNING SYSTEM USING,” J. Sustain. Dev. Policy, vol. 01, no. 01, pp. 144–169, 2025, doi: 10.63125/6y0qwr92.
I. E. Agbehadji, T. Mabhaudhi, J. Botai, and M. Masinde, “A Systematic Review of Existing Early Warning Systems ’ Challenges and Opportunities in Cloud Computing Early Warning Systems,” climate, 2023.
M. Siddique, T. Ahmed, and M. S. Husain, “EAI Endorsed Transactions Flood Monitoring and Early Warning Systems – An IoT Based Perspective,” vol. 9, no. 2, pp. 1–10.
C. Hu, Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou, “Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation,” pp. 1–16, 2018, doi: 10.3390/w10111543.
M. Lstm, G. Recurrent, U. Gru, F. Prediction, and C. Kim, “Water Level Prediction Model Applying a Long Short-Term,” 2022.
S. Arora, S. Kumar, and S. Kumar, “Enhanced Random Forest-Based Model for Flood Detection and Classification BT - Congress on Smart Computing Technologies,” M. Saraswat, A. Rajan, and A. Chakravorty, Eds., Singapore: Springer Nature Singapore, 2026, pp. 799–807.
S. Sahoo, “Sensor Fusion and Virtual Sensor Design for Enhanced Multi-Sensor Data Accuracy in Au- tonomous Systems,” vol. 01, no. 002, pp. 21–39, 2024.
V. Chamola, S. Member, V. Hassija, and A. R. Sulthana, “A Review of Trustworthy and Explainable Artificial Intelligence ( XAI ),” vol. 11, no. August 2023, 2025.
P. Nadya, A. Reyhan, E. Lestari, B. Purba, and L. Marlina, “Analisis Kesiapan BPBD Kota Binjai dalam Penerapan Kecerdasan Buatan untuk Sistem Peringatan Dini Bencana Banjir Banjir,” vol. 3, 2025.
A. N. Az-zikri, S. Indriyanto, and A. Wicaksono, “PERANCANGAN PROTOTIPE SISTEM MONITORING LEVEL AIR TANDON BERBASIS INTERNET OF THINGS ( IoT ) MENGGUNAKAN SENSOR ULTRASONIK JSN-SR04T,” vol. 2, no. 3, pp. 13–22, 2025.
D. A. N. S. U. Aj-srm, F. R. Maulidan, and I. Ardiansah, “MONITORING KETINGGIAN DAN VOLUME AIR BERBASIS INTERNET OF THINGS ( IOT ) MENGGUNAKAN NODEMCU ESP8266,” vol. 14, no. 1.
S. Arifin, “Perancangan Sistem Monitoring Kualitas Udara Real Time Basis Wireles Sensor Network Dan Edge Computing untuk Optimasi Letasi Data,” no. I, 2025.
M. Roohi, H. R. Ghafouri, S. M. Ashrafi, and M. H. Haghighi, “A hybrid approach for enhanced flood prediction and assessment : Leveraging physical models , deep learning and satellite remote sensing,” Big Earth Data, vol. 9, no. 3, pp. 439–472, 2025, doi: 10.1080/20964471.2025.2530850.
S. Veerappan, “Edge-Enabled Smart Storm water Drainage Systems : A Real- Time Analytics Framework for Urban Flood Management,” vol. 1, no. 1, pp. 52–59, 2024.
A. Rahman and E. P. Widiyanto, “Pengembangan Sistem Pemantauan Kebakaran Real-Time dan Peringatan Dini Menggunakan Teknologi LoRa pada Kawasan Perkotaan,” SENTRI J. Ris. Ilm., vol. 4, no. 12, pp. 4446–4464, 2025.
M. Amin and L. I. Burhan, “Integrasi Sensor Low-Cost , Aplikasi Mobile , dan Mekanisme Respons Komunitas : Model Early Warning System untuk Desa Berliterasi Teknologi Rendah,” vol. 1, no. 4, pp. 30–43, 2025, doi: 10.63982/dharmabakti.yp5vf934.
K. Edistira and S. Samsugi, “Pengembangan Sistem Pengukur Curah Hujan Otomatis Berbasis Iot dan Monitoring Suhu Lingkungan Menggunakan Sensor SHT31 mampu menyediakan data real-time dengan akurasi tinggi untuk mendukung pengambilan dengan berbagai sensor dan metode , ( Laksono & Nurgi,” vol. 4, no. 10, pp. 9907–9920, 2025.
J. Bhanye, Flood ‑ tech frontiers : smart but just ? A systematic review of AI ‑ driven urban flood adaptation and associated governance challenges. Springer International Publishing, 2025. doi: 10.1007/s44282-025-00190-9.
M. I. Hossain, R. Hossan, Z. H. Shaon, and N. Ferdous, “Linking digital twin paradigm for urban heat monitoring and policy integration to building smart city climate resilience,” pp. 1–27, 2026.
M. Rokhideh, C. Fearnley, and M. Budimir, “Multi ‑ Hazard Early Warning Systems in the Sendai Framework for Disaster Risk Reduction : Achievements , Gaps , and Future Directions,” Int. J. Disaster Risk Sci., vol. 16, no. 1, pp. 103–116, 2025, doi: 10.1007/s13753-025-00622-9.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 JEKIN - Jurnal Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JEKIN-Journal of Informatics Engineering provides open access to anyone, ensuring that the information and findings in the article are useful to everyone. This journal article's entire contents can be accessed and downloaded for free. In accordance with the Creative Commons Attribution-ShareAlike 4.0 International License.

JEKIN-Journal of Informatics Engineering is licensed under a Creative Commons Attribution-ShareAlike 4.0







