Literature Review: Image Processing-Based Forest Fire Detection
DOI:
https://doi.org/10.58794/jim.v2i1.503Keywords:
Accurate detection, Drone, Early detection, Forest fires, Fire monitoring, Image processing, Rapid responseAbstract
-Forest fires pose a significant threat to ecosystems, the environment, and human life. Early detection of forest fires is crucial for effective firefighting efforts. In this research, we propose the utilization of image processing for forest fire detection with the aim of improving rapid and accurate response in fire monitoring. Image processing methods are employed to analyze visual information obtained from satellite imagery, drones, or other sensors. The process involves image segmentation, classification, and texture analysis to identify the burned areas. Fire point detection algorithms are implemented to monitor and predict fire propagation. Through image processing, we achieved faster and more accurate forest fire detection. The information gathered from the images can be used to report real-time fire development and facilitate effective firefighting strategies. The adoption of this technology offers advantages in reducing environmental damage, economic losses, and risks to human life.
References
R. E. Wibowo, R. Teguh, and A. Lestari, “Deteksi Dini Kebakaran Hutan Dan Lahan Memanfaatkan Ekstraksi Exif Pada Informasi Gambar Berbasis Pengolahan Citra,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 15, no. 1, pp. 1–12, 2021, doi: 10.47111/jti.v15i1.1934.
R. T. Prasetio and E. Ripandi, “Optimasi Klasifikasi Jenis Hutan Menggunakan Deep Learning Berbasis Optimize Selection,” J. Inform., vol. 6, no. 1, pp. 100–106, 2019, doi: 10.31311/ji.v6i1.5176.
T. A. Pratiwi, M. Irsyad, R. Kurniawan, S. Agustian, and B. S. Negara, “Klasifikasi Kebakaran Hutan Dan Lahan Menggunakan Algoritma Naïve Bayes Di Kabupaten Pelalawan,” CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 1, p. 139, 2021, doi: 10.24114/cess.v6i1.22555.
H. Sunandar, “Perbaikan kualitas Citra Menggunakan Metode Gaussian Filter,” MEANS (Media Inf. Anal. dan Sist., vol. 2, no. 1, pp. 19–22, 2017, doi: 10.54367/means.v2i1.18.
A. Zubaidah, S. Sulma, S. Suwarsono, and I. Prasasti, “Pemanfaatan Citra VIIRS untuk Deteksi Asap Kebakaran Hutan dan Lahan di Indonesia,” J. Pengelolaan Sumberd. Alam dan Lingkung. (Journal Nat. Resour. Environ. Manag., vol. 9, no. 4, pp. 929–945, 2019, doi: 10.29244/jpsl.9.4.929-945.
A. Sepriando, H. Hartono, and R. H. Jatmiko, “Deteksi Kebakaran Hutan Dan Lahan Menggunakan Citra Satelit Himawari-8 Di Kalimantan Tengah,” J. Sains Teknol. Modif. Cuaca, vol. 20, no. 2, pp. 79–89, 2020, doi: 10.29122/jstmc.v20i2.3884.
M. Hanifah, L. Syaufina, and I. Prasasti, “Deteksi Area Bekas Kebakaran Hutan Dan Lahan Menggunakan Data Citra Resolusi Menengah Modis Dengan Pendekatan Indeks Kebakaran,” J. Nat. Resour. Environ. Manag., vol. 6, no. 1, pp. 77–85, 2016, doi: 10.19081/jpsl.6.1.77.
R. Prasasti, N. Wilis, A. Z.-S. J. Sains, and undefined 2021, “Segementasi Citra Menggunakan Metode Watershed Transform dengan Kombinasi Thershold, HSV, Grayscale dan Morphology Untuk Mendeteksi Sebaran API,” Ejournal.Uin-Suska.Ac.Id, vol. 19, no. 1, pp. 49–54, 2021, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/14880
D. Kinaneva, G. Hristov, J. Raychev, and P. Zahariev, “Early forest fire detection using drones and artificial intelligence,” 2019 42nd Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2019 - Proc., pp. 1060–1065, 2019, doi: 10.23919/MIPRO.2019.8756696.
S. Wu and L. Zhang, “Using Popular Object Detection Methods for Real Time Forest Fire Detection,” Proc. - 2018 11th Int. Symp. Comput. Intell. Des. Isc. 2018, vol. 1, pp. 280–284, 2018, doi: 10.1109/ISCID.2018.00070.
Z. Jiao et al., “A Deep learning based forest fire detection approach using uav and yolov3,” 1st Int. Conf. Ind. Artif. Intell. IAI 2019, pp. 1–5, 2019, doi: 10.1109/ICIAI.2019.8850815.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JIM - Journal International Multidisciplinary
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JIM - Multidisciplinary International Journal provides open access to anyone, ensuring that the information and findings in the article are useful to everyone. This journal article's entire contents can be accessed and downloaded for free. In accordance with the Creative Commons Attribution-ShareAlike 4.0 International License.
JIM-Multidisciplinary International Journa is licensed under a Creative Commons Attribution-ShareAlike 4.0