

Vol. 6 No. 1 Tahun. 2026

ISSN 2809-1353

DOI : 10.58794/jekin.v6i1.1913

Sistem Monitoring Real-Time dengan Deteksi Anomali untuk Keamanan

Aplikasi Web

Feby Permatasari Nugroho1, Imam Suharjo.2
1,2,3Universitas Mercu Buana Yogyakarta

e-mail: *1febypermatan@gmail.com, 2imam@mercubuana-yogya.ac.id

Abstract – Web traffic monitoring is essential for maintaining the reliability and security of web applications.

Despite the availability of established monitoring solutions such as ELK Stack, their implementation often demands

substantial computational resources and introduces latency in anomaly detection due to pull-based data collection

methods. This study aims to design and build a lightweight real-time web traffic monitoring system equipped with an

anomaly detection feature using Static Thresholding with time-window aggregation. The novelty of this research

lies in the integration of event-driven architecture using Node.js and WebSocket protocol (Socket.IO) for push-

based data streaming, combined with MongoDB for efficient log storage and background worker for asynchronous

anomaly detection. The system is deployed on a server with 2 CPU Cores, 2 GiB Memory, and 40GB Storage,

employing Nginx as a reverse proxy and PM2 for process management. Performance evaluation was conducted

through functional testing, anomaly detection validation, and stress testing with 1,000 concurrent connections using

wrk tool. Test results demonstrate that the system successfully visualizes traffic metrics with a monitoring latency of

less than 200 milliseconds and achieves 100% accuracy in detecting anomalies such as traffic spikes (up to 9,019

req/min) and high error rates (88.9%). The system sends Telegram alerts within a maximum of 60 seconds after

threshold violations, providing early warning capabilities for system administrators with minimal resource

consumption.

Keywords − Web Traffic Monitoring, Real-Time, Node.js, Socket.io, MongoDB, Anomaly Detection, Static

Thresholding, Telegram Notifications.

Abstrak − Pemantauan trafik web sangat penting untuk menjaga keandalan aplikasi web. Meskipun tersedia solusi

monitoring mapan seperti ELK Stack, implementasinya sering memerlukan sumber daya komputasi yang besar dan

menimbulkan latensi dalam deteksi anomali karena metode pengumpulan data berbasis pull. Penelitian ini bertujuan

untuk merancang dan membangun sistem monitoring trafik web real-time yang ringan dan dilengkapi dengan fitur

deteksi anomali menggunakan Static Thresholding dengan agregasi berbasis jendela waktu. Kebaruan penelitian ini

terletak pada integrasi arsitektur event-driven menggunakan Node.js dan protokol WebSocket (Socket.IO) untuk

streaming data berbasis push, dikombinasikan dengan MongoDB untuk penyimpanan log yang efisien dan background

worker untuk deteksi anomali secara asinkron. Sistem diimplementasikan pada server dengan spesifikasi 2 CPU Cores,

Memori 2 GiB, dan penyimpanan 40GB, menggunakan Nginx sebagai reverse proxy dan PM2 untuk manajemen

proses. Evaluasi kinerja dilakukan melalui pengujian fungsional, validasi deteksi anomali, dan stress testing dengan

1.000 koneksi konkuren menggunakan alat wrk. Hasil pengujian menunjukkan bahwa sistem mampu memvisualisasikan

metrik trafik dengan latensi monitoring di bawah 200 milidetik dan mencapai akurasi 100% dalam mendeteksi anomali

seperti lonjakan trafik (hingga 9.019 req/min) dan tingkat kesalahan tinggi (88,9%). Sistem mengirimkan notifikasi

Telegram dalam rentang waktu maksimal 60 detik setelah anomali terdeteksi, memberikan kemampuan peringatan dini

bagi administrator sistem dengan konsumsi sumber daya minimal.

mailto:1xxxx@xxxx.xxx
mailto:imam@mercubuana-yogya.ac.id

Nugroho, Sistem Monitoring Real-Time …| 37

Kata Kunci − Monitoring Trafik Web, Real-Time, Node.js, Socket.io, MongoDB, Deteksi

Anomali, Static Thresholding, Notifikasi Telegram.

I. PENDAHULUAN

Dalam ekosistem layanan digital, stabilitas performa dan ketersediaan akses menjadi indikator mutlak kualitas

sebuah aplikasi web. Administrator sistem memerlukan instrumen yang mampu menyajikan visibilitas instan

terhadap dinamika trafik guna memitigasi gangguan teknis maupun ancaman eksternal secara dini. Penurunan

responsivitas atau kegagalan akses, meski dalam durasi singkat, berdampak langsung pada kerugian material

dan degradasi kepercayaan pengguna terhadap integritas platform. Salah satu tantangan terbesar adalah

serangan siber yang bertujuan melumpuhkan sumber daya komputasi dengan membanjiri server menggunakan

trafik palsu dalam volume besar [1].

Deteksi terhadap anomali trafik menjadi krusial karena pola serangan modern semakin sulit dibedakan dengan

aktivitas pengguna normal tanpa dukungan sistem analisis yang mumpuni [2]. Metode pemantauan infrastruktur

konvensional sering kali hanya memberikan gambaran umum, sehingga diperlukan analisis lebih mendalam

pada lapisan aplikasi (Layer 7) untuk mengidentifikasi ancaman yang lebih spesifik.

A. Rumusan Masalah

Berdasarkan analisis literatur dan kebutuhan praktis, penelitian ini mengidentifikasi tiga permasalahan

utama dalam sistem monitoring trafik web saat ini:

1. Latensi Deteksi: Sistem monitoring konvensional berbasis pull (seperti SNMP) mengalami

keterlambatan informasi karena bergantung pada polling interval, sehingga tidak dapat

mendeteksi insiden kritis secara instan [4].

2. Konsumsi Sumber Daya Tinggi: Solusi monitoring mapan seperti ELK Stack memerlukan

spesifikasi hardware yang besar, terutama konsumsi RAM yang signifikan, sehingga tidak

ekonomis untuk skala kecil hingga menengah [8].

3. Kompleksitas Implementasi: Sistem monitoring yang ada memiliki tingkat kompleksitas

konfigurasi yang tinggi dan tidak menyediakan mekanisme alerting otomatis yang terintegrasi

untuk peringatan dini kepada administrator [4].

B. Tujuan Penelitian

Penelitian ini bertujuan untuk:

1. Merancang dan mengimplementasikan sistem monitoring trafik web real-time berbasis event-

driven architecture yang memiliki latensi rendah menggunakan protokol WebSocket.

2. Mengembangkan mekanisme deteksi anomali berbasis Static Thresholding dengan time-

window aggregation yang efisien untuk mengidentifikasi lonjakan trafik dan error rate.

3. Mengintegrasikan sistem alerting otomatis melalui Telegram Bot untuk memberikan notifikasi

peringatan dini kepada administrator ketika anomali terdeteksi.

4. Mengevaluasi kinerja sistem melalui pengujian fungsional, validasi akurasi deteksi anomali,

dan stress testing untuk memvalidasi efektivitas sistem pada kondisi beban tinggi.

C. Kontribusi Penelitian

Kontribusi utama dari penelitian ini adalah:

38 | JEKIN (Jurnal Teknik Informatika)

1. Arsitektur Lightweight: Mengusulkan arsitektur monitoring berbasis Full Stack JavaScript

(Node.js, Socket.IO, MongoDB) yang dapat berjalan pada spesifikasi server minimal (2 CPU

Cores, 2 GiB RAM) tanpa mengorbankan performa real-time.

2. Push-Based Real-Time Streaming: Implementasi protokol WebSocket untuk streaming data

metrik secara push-based, mengeliminasi latensi yang terjadi pada metode pull-based

konvensional.

3. Asynchronous Anomaly Detection: Desain background worker yang melakukan analisis

anomali secara asinkron tanpa mengganggu proses pengumpulan data utama, memastikan

sistem tetap responsif pada beban tinggi.

4. Integrated Alerting System: Integrasi otomatis dengan Telegram Bot API untuk mengirimkan

notifikasi real-time kepada administrator dengan response time maksimal 60 detik.

Penelitian ini diharapkan dapat memberikan alternatif solusi monitoring yang lebih efisien, mudah

diimplementasikan, dan ekonomis bagi organisasi yang memerlukan visibilitas real-time terhadap trafik aplikasi

web mereka untuk meningkatkan keamanan dan keandalan layanan.

II. PENELITIAN YANG TERKAIT

Ketersediaan dan kinerja aplikasi web merupakan faktor kritis dalam layanan digital modern. Berbagai

penelitian telah dilakukan untuk mengembangkan sistem monitoring dan deteksi anomali dengan pendekatan

yang beragam.

TABEL I

STATE-OF-THE-ART (SOTA)

Peneliti /
Metode / Teknologi Fokus Monitoring Kelemahan / Perbedaan

Sistem

Setiawan &

Kurniawan

(2021) [8]

ELK Stack
Analisis log server web secara

menyeluruh

Memerlukan sumber daya

perangkat keras (RAM) yang

sangat tinggi.

Alzahrani et

al. (2022) [4]

Node.js & WebSocket

Kerangka kerja umum untuk

monitoring dan alerting

Fokus pada kerangka kerja

sistem pemantauan secara luas,

bukan spesifik pada deteksi

anomali Layer 7.

Pratama et al.

(2020) [7]

SNMP & REST API

Monitoring infrastruktur

jaringan

Fokus pada lapisan infrastruktur

umum, kurang mendalam pada

analisis anomali di lapisan

aplikasi (Layer 7).

Saini &

Khare

(2020) [2]

Tinjauan Keamanan Siber

Deteksi anomali pada trafik web

secara teoritis

Bersifat tinjauan pustaka

(review), belum memberikan

implementasi sistem monitoring

real-time mandiri yang ringan.

Penelitian

Ini (2026)

Node.js, Socket.io,

MongoDB, Static

Thresholding

Monitoring trafik Layer 7 &

Deteksi Anomali Real-Time

Menggunakan arsitektur

lightweight (2GB RAM)

dengan pengiriman data

push-based dan notifikasi

instan via Telegram.

Nugroho, Sistem Monitoring Real-Time …| 39

Berdasarkan analisis state-of-the-art, teridentifikasi beberapa gap penelitian:

1. Trade-off Complexity vs Efficiency : Penelitian yang menggunakan machine learning [1, 6] memiliki

akurasi tinggi namun memerlukan overhead komputasi besar. Sebaliknya, sistem yang lebih ringan [4]

tidak menyediakan validasi performa yang komprehensif.

2. Fragmentasi Solusi : Penelitian existing cenderung fokus pada satu aspek (storage [5], communication

[3], atau detection [6]) tanpa mengintegrasikan keseluruhan pipeline monitoring secara end-to-end.

3. Kurangnya Validasi Real-World : Mayoritas penelitian tidak menyertakan pengujian stress test

dengan beban realistis (1000+ concurrent connections) untuk memvalidasi kinerja sistem pada kondisi

production-like.

Penelitian ini mengisi gap dengan mengusulkan sistem monitoring terintegrasi yang menggabungkan:

1. Event-driven architecture (Node.js + Socket.IO) untuk real-time streaming [3, 4]

2. Efficient storage (MongoDB) yang terbukti optimal untuk time-series data [5]

3. Lightweight anomaly detection (Static Thresholding) yang tidak memerlukan training data [6]

4. Automated alerting (Telegram Bot) untuk early warning yang belum dieksplorasi dalam penelitian

terdahulu

5. Comprehensive validation melalui stress testing dengan 1000 concurrent connections.

Dengan demikian, penelitian ini memberikan kontribusi berupa solusi monitoring yang praktis, efisien, dan

teruji untuk environment dengan resource constraints, sambil tetap memberikan capability real-time monitoring

dan anomaly detection yang akurat.

III. METODE PENELITIAN
A. Perancangan Arsitektur Sistem

Perancangan arsitektur sistem monitoring ini mengadopsi kerangka kerja aplikasi real-time berbasis

event-driven untuk meminimalkan latensi pengiriman data dari klien ke dasbor. Berdasarkan alur

penelitian yang dikembangkan, komponen utama sistem dirancang secara modular agar mampu

menangani beban trafik tinggi secara skalabel. Komponen-komponen tersebut disinkronkan dengan

diagram alur sistem pada Gambar 1 sebagai berikut:

1. Collector Service: Berfungsi sebagai entry point yang menerima data metrik dari Client Apps

melalui HTTP Request (skrip yang tertanam pada aplikasi target). Layanan ini bertanggung

jawab melakukan validasi awal sebelum data diteruskan ke basis data.

2. MongoDB (Raw Traffic Collection): Bertindak sebagai pusat penyimpanan log trafik mentah.

Pemilihan MongoDB didasarkan pada riset yang menunjukkan efisiensinya dalam menangani

operasi penulisan (write) data besar dan skema yang fleksibel untuk metadata HTTP.

Berdasarkan data pengujian, koleksi requests berhasil menampung hingga 387.731 dokumen

log.

3. Analyzer Service: Merupakan komponen inti yang melakukan Stream/Query secara periodik

terhadap data di MongoDB. Layanan ini mengimplementasikan logika deteksi anomali untuk

mengidentifikasi pola trafik yang mencurigakan atau lonjakan error yang ekstrem.

4. Dashboard WebSocket: Berfungsi untuk mengubah kejadian real-time yang terdeteksi

menjadi aliran data (WebSocket Stream). Protokol ini memungkinkan komunikasi dua arah

sehingga data dapat dikirimkan ke dasbor tanpa perlu melakukan refresh halaman manual.

5. Real-Time Dashboard: Antarmuka pengguna akhir yang menerima stream data dan

memvisualisasikannya ke dalam bentuk grafik dinamis, memberikan visibilitas instan bagi

administrator sistem.

Gbr. 1 Alur diagram.

B. Spesifikasi Lingkungan Pengembangan Implementasi

40 | JEKIN (Jurnal Teknik Informatika)

sistem dilakukan pada lingkungan server cloud dengan spesifikasi sebagai berikut :

● CPU: 2 Cores

● RAM: 2 GiB

● Storage: 40 GB SSD

● Sistem Operasi: Linux (Ubuntu/Debian)

● Web Server: Nginx (sebagai Reverse Proxy dan Load Balancer)

● Keamanan SSL: Certbot (Let's Encrypt)

● Manajemen Proses: PM2 (Process Manager untuk Node.js)

● Software: Node.js, MongoDB, Nginx (sebagai Webserver), Certbot (SSL), dan PM2.

C. Manajemen Data MongoDB

Sistem menggunakan MongoDB Atlas untuk penyimpanan persisten.

TABEL 2

STATISTIK KOLEKSI DATABASE MONITORING

Nama Koleksi Fungsi Utama Jumlah Dokumen Ukuran Penyimpanan

requests Log metrik trafik

mentah

387.731 17,48 MB

anomalies Riwayat kejadian

anomali

686 94,21 KB

settings Konfigurasi threshold 3 36,86 KB

Gbr. 2 Struktur MongoDB.

Data pada Tabel 2 membuktikan skalabilitas arsitektur dalam menangani ratusan ribu data dengan

efisiensi ruang simpan yang optimal.

D. Metode Deteksi Anomali

Sistem menerapkan metode Static Thresholding (Ambang Batas Statis) untuk mendeteksi

penyimpangan kinerja server secara real-time berdasarkan batas nilai tetap yang dikonfigurasi oleh

administrator sebagai acuan kondisi normal [11]. Implementasi ini memungkinkan sistem untuk

Nugroho, Sistem Monitoring Real-Time …| 41

memproses metadata HTTP yang bervariasi tanpa membutuhkan overhead komputasi yang kompleks,

sehingga metrik kinerja dapat dievaluasi secara instan. Berbeda dengan deteksi berbasis statistik yang

adaptif, pendekatan ini dipilih karena efisiensi komputasinya yang tinggi dalam menangani aliran data

masif tanpa membebani sumber daya server utama secara berlebihan [2]. Hal ini sangat relevan dengan

spesifikasi lingkungan pengembangan yang menggunakan 2 vCPU, di mana kesederhanaan algoritma

menjadi kunci stabilitas sistem. Nilai ambang batas yang ditentukan mencakup parameter kritis pada

Requests Per Minute (RPM), rata-rata latensi respons, dan rasio kegagalan permintaan yang menjadi

indikator utama kesehatan layanan.

Proses deteksi dijalankan oleh Analyzer Service melalui worker yang melakukan agregasi data request

dalam jendela waktu tertentu setiap 60 detik [9]. Penggunaan jendela waktu yang konsisten memastikan

bahwa setiap lonjakan trafik dianalisis secara atomik, sehingga meminimalkan risiko adanya data yang

terlewat dalam proses evaluasi. Agregasi ini dikelola secara asinkron oleh komponen anomalyWorker.js

sehingga tidak mengganggu kinerja utama Collector Service dalam menerima trafik masuk. Sistem

mengambil himpunan data metrik dari basis data MongoDB untuk dianalisis secara periodik guna

memastikan visibilitas kondisi server yang berkelanjutan [11]. Basis data NoSQL ini terbukti mampu

menangani beban data besar mencapai 387.731 dokumen log dengan tetap menjaga efisiensi ruang

simpan sebesar 17,48 MB.
Algoritma deteksi dirumuskan melalui tahapan teknis sebagai berikut:

1. Agregasi Data: Sistem mengambil himpunan data request 𝑅 yang masuk dalam rentang waktu

[tnow - T, tnow]

2. Perhitungan Metrik: Sistem menghitung tiga parameter utama berdasarkan data pada

himpunan R:

1. Error Rate (𝐸): Rasio jumlah request gagal (status ≥ 400) terhadap total request.

𝐸 =
𝛴𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑡𝑎𝑡𝑢𝑠 ≥ 400

𝛴𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

2. Average Latency (𝐿): Rata-rata waktu respons seluruh request dalam himpunan R.

𝐿 =
𝛴𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

𝛴𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

3. Throughput (𝑅𝑃𝑀): Total request dibagi durasi jendela waktu (menit).

𝑅𝑃𝑀 =
𝛴𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

𝑇(𝑚𝑒𝑛𝑖𝑡)

3. Evaluasi Threshold: Anomali (𝐴) dideteksi jika nilai metrik melampaui ambang batas (𝑇h)

yang tersimpan di database:

Aerror ⇔ E > Therror

Alatency ⇔ L > Thlatency

Atraffic ⇔ RPM > Thrpm

Jika kondisi terpenuhi, sistem akan mencatat kejadian tersebut ke dalam koleksi anomalies di

MongoDB dan memicu pengiriman notifikasi via Telegram. Pendekatan ini dipilih karena

efisiensi komputasinya yang tinggi dan kemudahan konfigurasi operasional. Penggunaan

ambang batas tetap (fixed threshold) sangat efektif untuk mendeteksi lonjakan trafik ekstrem

yang menjadi indikasi utama adanya serangan siber seperti Distributed Denial of Service

(DDoS) [1]. Hal ini dibuktikan melalui hasil pengujian di mana sistem berhasil menangkap

lonjakan hingga 9.019,0 req/min. Selain itu, sistem mampu mengidentifikasi lonjakan error

rate hingga 88,9% pada kondisi beban puncak, yang segera ditandai sebagai insiden kritis.

42 | JEKIN (Jurnal Teknik Informatika)

Deteksi dini terhadap pola trafik mencurigakan merupakan garda terdepan dalam menjaga

ketersediaan layanan pada jaringan modern [6].

Jika metrik terukur melampaui ambang batas, sistem secara otomatis memicu pengiriman

notifikasi peringatan dini melalui Telegram Bot. Sistem peringatan ini dirancang dengan siklus

respon maksimal 60 detik, memastikan administrator menerima informasi segera setelah

anomali tercatat di basis data. Integrasi media alerting responsif ini memberikan visibilitas

instan kepada administrator mengenai ancaman keamanan atau kegagalan sistem tanpa harus

memantau dasbor secara terus-menerus [14]. Notifikasi yang dikirimkan melalui telegram.js

mencakup tipe anomali dan nilai metrik yang dilanggar, sehingga mempercepat proses mitigasi

gangguan. Pencatatan kejadian anomali ke dalam koleksi anomalies juga menyediakan data

historis yang krusial untuk analisis pasca-insiden dan optimasi infrastruktur di masa depan.

E. Diagram Alir Data

Data dikirim dari client application melalui HTTP POST ke endpoint /ingest pada server monitoring.

Proses transmisi ini melibatkan collector middleware yang tertanam pada aplikasi target untuk

melakukan intersepsi terhadap setiap permintaan HTTP guna mengekstraksi metadata krusial seperti

kode status respons, jalur URL, dan durasi waktu respons secara real-time. Server memproses data

tersebut dan menyimpannya langsung ke dalam koleksi MongoDB secara asinkronus. Implementasi

penyimpanan pada koleksi requests di dalam MongoDB Atlas memungkinkan sistem menangani beban

penulisan data masif dengan performa stabil, terbukti dengan keberhasilan pengelolaan lebih dari

387.000 dokumen log dalam efisiensi ruang simpan sebesar 17,48 MB.

Secara periodik, worker melakukan agregasi data dari database, menghitung rata-rata metrik, dan

memancarkan (broadcast) data ke dashboard serta mengirim notifikasi Telegram jika ambang batas

terlampaui. Mekanisme agregasi ini dikelola secara sistematis oleh background worker

(anomalyWorker.js) yang beroperasi pada interval jendela waktu (time-window) setiap 60 detik. Metrik

yang dihasilkan, mencakup Requests Per Minute (RPM), rata-rata latensi, dan error rate,

didistribusikan ke antarmuka pengguna melalui protokol WebSocket menggunakan pustaka Socket.IO

untuk menjamin visibilitas data dengan latensi di bawah 200 milidetik. Apabila hasil evaluasi algoritma

Static Thresholding mendeteksi adanya anomali yang melampaui batas toleransi operasional, sistem

secara otomatis memicu fungsi pada telegram.js untuk mengirimkan peringatan instan kepada

administrator.

http://telegram.js/

Nugroho, Sistem Monitoring Real-Time …| 43

Gbr. 3 Diagram Alir.

F. Desain Eksperimen dan Metode Evaluasi

Untuk memvalidasi kinerja dan efektivitas sistem, dilakukan tiga jenis pengujian dengan parameter

terukur sebagai berikut:

1. Pengujian Fungsionalitas dan Real-Time Monitoring

Tujuan: Mengukur latensi visualisasi data dari client ke dashboard dan validasi pencatatan

data.

Variabel Ukur :

1. Latency visualisasi (ms)

2. Akurasi pencatatan metadata (path, status code, timestamp)

3. Stabilitas koneksi WebSocket

Skenario Uji :

4. Skenario 1: Mengirim 1 request normal (Status 200) → Mengukur waktu hingga data

muncul di dashboard

5. Skenario 2: Mengirim request dengan path berbeda (/api/login, /api/data) → Validasi

ketepatan pencatatan

6. Skenario 3: Mengirim burst 50 requests dalam 1 detik → Mengukur stabilitas

grafik RPS real-time

7. Skenario 4: Mematikan server target → Validasi deteksi kondisi 0 RPM

Kriteria Keberhasilan : Latensi visualisasi < 200ms, data tercatat 100% akurat

2. Pengujian Fitur Anomaly Detection dan Alerting

Tujuan: Memvalidasi akurasi deteksi anomali dan kecepatan pengiriman notifikasi Telegram.

Variabel Ukur:

1. Akurasi deteksi (True Positive Rate)

2. Response time alert (detik)

3. Ketepatan threshold triggering

Skenario Uji:

4. Anomali 1: HIGH_TRAFFIC → Simulasi 1000 concurrent connections untuk

memicu threshold RPM > 1200

5. Anomali 2: HIGH_ERROR_RATE → Inject error responses (status 500/502) hingga

error rate > 20%

44 | JEKIN (Jurnal Teknik Informatika)

6. Anomali 3: HIGH_LATENCY → Simulasi artificial delay pada server target hingga

latency > 500ms

Alat Uji : wrk (Stress Testing Tool)

Prosedur :

7. Set threshold pada database MongoDB (RPM: 1200, Error Rate: 20%, Latency: 500ms)

8. Trigger anomali menggunakan alat uji

9. Observasi log deteksi pada koleksi anomalies

10. Catat waktu pengiriman notifikasi Telegram

11. Validasi konten pesan alert (tipe anomali, nilai terukur, threshold)

Kriteria Keberhasilan :

12. Akurasi deteksi = 100% (semua anomali terdeteksi)

13. Response time alert ≤ 60 detik (sesuai worker interval)

3. Pengujian Beban (Stress Testing)

Tujuan: Mengukur stabilitas dan batas kapasitas sistem pada kondisi beban puncak.

Variabel Ukur :

1. Throughput (req/sec)

2. Average Latency (ms)

3. Error Rate (%)

4. Socket Timeout Count

Konfigurasi Uji :

5. Tool: wrk (HTTP benchmarking tool)

6. Durasi: 5 menit (300 detik)

7. Threads: 4

8. Connections: 1000 concurrent connections

9. Target: Endpoint https://donutawan.my.id

Command wrk :

wrk -t4 -c1000 -d300s https://donutawan.my.id

Metrik yang Diobservasi:

● Total requests yang berhasil dikirim

● Throughput rata-rata (req/sec)

● Latensi (rata-rata, standar deviasi, percentile)

● Jumlah error response (Non-2xx/3xx)

● Jumlah socket timeout

Kriteria Keberhasilan:

● Server tetap responsif (tidak crash)

● Sistem monitoring berhasil mendeteksi kondisi overload sebagai anomali

● Notifikasi alert terkirim saat threshold dilanggar

https://donutawan.my.id/
https://donutawan.my.id/

Nugroho, Sistem Monitoring Real-Time …| 45

TABEL 3

RINGKASAN DESAIN EKSPERIMEN

No Jenis Pengujian Parameter Ukur Alat Uji Target Metrik

1
Fungsionalitas Real-

Time
Latensi visualisasi Postman, Browser < 200ms

2 Deteksi Anomali
Akurasi, Response Time Alert

wrk, Custom Script 100%, ≤ 60s

3 Stress Testing Throughput, Error Rate
wrk (1000

connections)

Server stabil, alert

terkirim

Prosedur Pengumpulan Data :

1. Setiap pengujian dijalankan 3 kali (trial) untuk memastikan konsistensi hasil

2. Screenshot dashboard dan log Telegram disimpan sebagai bukti visual

3. Data agregat (rata-rata, min, max, std dev) dihitung untuk setiap metrik

4. Hasil divalidasi dengan membandingkan log database MongoDB dengan output alat uji

Dengan desain eksperimen yang terstruktur ini, kinerja sistem dapat dievaluasi secara komprehensif dari aspek

fungsionalitas, akurasi deteksi, dan ketahanan pada beban tinggi.

IV. HASIL DAN PEMBAHASAN

A. Pengujian Fungsionalitas dan Real-Time Monitoring

Pengujian ini bertujuan untuk mengukur kecepatan respon sistem dalam memvisualisasikan data dari

klien ke dasbor (dashboard) serta memvalidasi fungsionalitas pencatatan data. Pengujian dilakukan

dengan skenario server normal dan simulasi request.

TABEL 4

PENGUJIAN KONDISI REAL-TIME DAN FUNGSIONALITAS SISTEM

No Skenario Pengujian Parameter Ukur Hasil yang

Diharapkan

Hasil Terukur Kesimpulan

1 Mengirim request normal

(Status 200) ke endpoint

/collect

Latensi

Visualisasi

Data muncul di

grafik dan tabel

dashboard

seketika.

< 200 ms

(Visualisasi

Instan)

Berhasil

2 Mengirim request dengan

path berbeda (misal:

/api/login)

Ketepatan Data Path tercatat

sesuai input

pada Tabel

"Recent

Requests".

Sesuai

(/api/login

tercatat)

Berhasil

3 Mengirim burst 50 request

dalam 1 detik.

Stabilitas

Socket

Grafik RPS

(Requests Per

Second) naik

secara real-

time.

Grafik RPS

naik instan

Berhasil

4 Server Target Mati (Tidak Status Grafik menjadi 0 RPM Berhasil

46 | JEKIN (Jurnal Teknik Informatika)

mengirim data ke /collect Dashboard datar (0 RPM)

setelah interval

grafik update.

terdeteksi

dalam 5 detik

Gbr. 4 Dashboard Monitoring.

Pada Gambar 4, terlihat grafik garis yang bergerak dinamis sesuai dengan trafik yang masuk.

Penggunaan library Chart.js memungkinkan visualisasi yang responsif tanpa perlu me-reload halaman.

Hasil pengujian pada Tabel 4 menunjukkan bahwa sistem berhasil mencapai latensi visualisasi di bawah

200 milidetik untuk seluruh skenario. Pencapaian ini mengonfirmasi efektivitas protokol WebSocket

dalam menyediakan komunikasi bidirectional real-time sebagaimana dijelaskan dalam RFC 6455 [11].

Berbeda dengan metode polling konvensional yang memiliki inherent latency akibat request-response

cycle, WebSocket mempertahankan persistent connection yang memungkinkan server melakukan push

data secara instan ketika event terjadi [3].

Perbandingan dengan Penelitian Terdahulu:

Penelitian Alzahrani et al. (2022) [4] melaporkan latency monitoring sekitar 500-800ms menggunakan

HTTP polling. Sistem yang dikembangkan dalam penelitian ini berhasil mereduksi latency hingga 60-

75% dengan mengadopsi arsitektur event-driven berbasis Socket.IO. Peningkatan performa ini sejalan

dengan temuan Brown & Wilson (2019) [3] yang menyatakan bahwa WebSocket dapat mengurangi

overhead bandwidth hingga 88% dibandingkan HTTP long-polling pada aplikasi real-time.

Keterbatasan yang Teridentifikasi:

Meskipun sistem menunjukkan performa yang baik pada Skenario 1-3, pengujian Skenario 4 (server

mati) mengungkapkan bahwa sistem memerlukan waktu 5 detik untuk mendeteksi kondisi 0 RPM.

Delay ini disebabkan oleh interval update grafik yang dikonfigurasi pada client-side Chart.js. Pada

implementasi production, administrator perlu menyeimbangkan trade-off antara update frequency dan

beban rendering browser.

Nugroho, Sistem Monitoring Real-Time …| 47

B. Pengujian Fitur Anomaly Alert

Pengujian ini bertujuan untuk mengukur akurasi dan kecepatan sistem dalam mendeteksi anomali serta

mengirimkan notifikasi ke Telegram. Berdasarkan konfigurasi pada source code, sistem melakukan

pengecekan (worker) setiap 60 detik sesuai dengan parameter ANOMALY_WINDOW_SECONDS. Data

pengujian diambil dari hasil simulasi beban puncak menggunakan alat wrk dengan target 1.000 koneksi

konkuren.

TABEL 5

PENGUJIAN FUNGSI ALERT BERDASARKAN DATA REAL-TIME

No Skenario Anomali

(Simulasi)

Threshold

Sistem

Nilai Terukur

(Measured)

Waktu

Respon Alert

Status

1 High Traffic (Peak):

Beban 1.000 koneksi.

RPM > 1.200 9.019,0

req/min

60 detik

(siklus

worker)

Berhasil

2 High Traffic

(Sustained): Beban

berkelanjutan.

RPM > 1.200 8.860,0

req/min

60 detik Berhasil

3 High Traffic (Initial):

Awal lonjakan trafik.

RPM > 1.200 6.447,0

req/min

60 detik Berhasil

4 Error Rate & Latency:

Monitoring parameter

lain.

Error > 20% Terpantau

aktif

Terintegrasi Berhasil

Gbr. 5 Telegram Alert. Gbr. 6 Dashboard Alert.

Analisis Hasil:

Sistem mencapai akurasi 100% dalam mendeteksi anomali HIGH_TRAFFIC dengan nilai terukur

mencapai 9.019 req/min (7,5x threshold). Namun, analisis lebih lanjut menunjukkan bahwa hanya 46%

dari total request tercatat dalam database monitoring. Diskrepansi ini terjadi karena :

1. Server Target Bottleneck: Pada throughput 325,91 req/sec (hasil wrk), server target dengan 2

vCPU mengalami saturasi CPU, menyebabkan sebagian request tidak berhasil diproses

(ditandai dengan 66.035 socket timeouts).

48 | JEKIN (Jurnal Teknik Informatika)

2. Asynchronous Write Limitation: MongoDB write operation, meskipun cepat (rata-rata 3-5ms

per document), tetap terbatas oleh CPU availability server. Ketika CPU usage mencapai 95-

100%, antrian write operation mengalami backpressure.

Meskipun terdapat data loss sebesar 54%, sistem tetap berhasil mendeteksi anomali karena sampling

46% sudah cukup merepresentasikan kondisi overload. Dalam konteks anomaly detection, hal ini

sejalan dengan prinsip statistical sampling di mana sampel representatif (>30% populasi) dapat

mengidentifikasi outlier dengan confidence level tinggi [11].

Metode Static Thresholding yang diimplementasikan terbukti efektif untuk mendeteksi anomali

eksplisit (lonjakan mendadak) sebagaimana dijelaskan Montgomery (2019) [11]. Namun, metode ini

memiliki kelemahan inherent:

1. False Negative Risk: Jika trafik naik bertahap (slow ramp-up attack), sistem mungkin tidak

mendeteksi hingga threshold terlewati.

2. Threshold Tuning Challenge: Nilai threshold yang terlalu rendah memicu false positive,

sedangkan terlalu tinggi menyebabkan missed detection.

Penelitian Khan et al. (2022) [6] mengusulkan adaptive thresholding berbasis moving average untuk

mengatasi keterbatasan ini. Pada penelitian mendatang, integrasi adaptive threshold dapat

meningkatkan sensitivitas deteksi tanpa meningkatkan false positive rate.

Perbandingan Response Time Alert:

Sistem mencapai response time alert maksimal 60 detik, sesuai dengan interval worker yang

dikonfigurasi. Nilai ini lebih cepat dibandingkan sistem monitoring berbasis SNMP yang memiliki

polling interval 5 menit [7], namun masih lebih lambat dari sistem ML-based real-time detection (~1-

5 detik) [1]. Trade-off ini diterima mengingat overhead komputasi ML yang jauh lebih besar.

TABEL 6

CONTOH LOG DETEKSI ANOMALI NYATA DARI DATABASE

Tipe Anomali Pesan Kesalahan Terukur Status Notifikasi

HIGH_ERROR_RATE Error rate tinggi: 88,9% (24/27

request gagal)

Terkirim ke Telegram

SPIKE_TRAFFIC Spike trafik: 56 req/60s (3x

lipat baseline)

Terkirim ke Telegram

Analisis data menunjukkan bahwa sistem sangat sensitif terhadap lonjakan kegagalan (error rate) yang

ekstrem (88,9%), di mana sistem segera menandai kejadian tersebut sebagai anomali dengan tingkat

keparahan tinggi (severity: high).

C. Pengujian Beban (Stress Testing)

Pengujian stabilitas dilakukan menggunakan alat wrk dengan durasi 5 menit untuk mensimulasikan

kondisi beban puncak (peak load). Skenario pengujian menggunakan 1.000 koneksi konkuren

(connections) dengan 4 thread proses.

Nugroho, Sistem Monitoring Real-Time …| 49

Gbr. 7 Hasil Stress-test.

TABEL 7

HASIL PENGUKURAN PERFORMA SERVER SAAT BEBAN PUNCAK

Metrik Nilai Terukur Keterangan

Total Requests 104.925 Total permintaan yang dikirim

selama ±5 menit.

Throughput 325,91 req/sec Kapasitas rata-rata server

menangani permintaan per

detik.

Rata-rata Latensi 220,92 ms Latensi rata-rata masih dalam

batas wajar (<500ms).

Deviasi Latensi 242,80 ms Tingginya deviasi standar

(hampir setara rata-rata)

menunjukkan ketidakstabilan

respons server.

Respon Error (Non-2xx) 40.331 (38,4%) Server mengembalikan kode

status error (500/502/503)

akibat overload.

Socket Timeouts 66.035 Terjadi kegagalan koneksi

(timeout) yang masif,

menandakan antrean proses

server penuh.

Hasil stress testing pada Tabel 7 menunjukkan degradasi performa signifikan pada server target:

● Error rate 38,4% (40.331 dari 104.925 requests)

● Socket timeout 66.035 kejadian

● Deviasi latensi tinggi (242,80 ms ≈ rata-rata latensi)

Tingginya deviasi standar latensi mengindikasikan high variance dalam response time, yang merupakan early

indicator dari resource saturation [11]. Fenomena ini terjadi karena :

1. CPU Contention: Dengan 2 vCPU, server hanya dapat melayani ~150-200 concurrent threads secara

efisien. Pada 1000 connections, terjadi context switching overhead yang drastis.

2. MongoDB Write Queue Saturation: MongoDB memiliki write lock pada document level. Pada high

concurrency, lock contention menyebabkan write operation queuing, yang terlihat dari peningkatan

latency.

Meskipun server target mengalami failure (38,4% error rate), sistem monitoring tetap berfungsi dengan:

1. Mendeteksi anomali HIGH_TRAFFIC dan HIGH_ERROR

2. Mengirimkan alert Telegram dalam 60 detik

3. Dashboard tetap responsif menampilkan metrik real-time

Ini membuktikan bahwa arsitektur decoupled (monitoring service terpisah dari target server) berhasil menjaga

observability bahkan saat target service mengalami degradasi. Prinsip ini sejalan dengan best practice

distributed systems yang mengharuskan monitoring infrastructure independent dari service yang dimonitor [5].

Limitasi yang Teridentifikasi:

50 | JEKIN (Jurnal Teknik Informatika)

1. Scalability Ceiling: Sistem saat ini optimal untuk trafik hingga ~5.000-6.000 req/min. Di atas threshold

ini, MongoDB write throughput menjadi bottleneck.

2. Single Point of Failure: MongoDB dan monitoring server berjalan pada single instance. Pada

production environment, diperlukan replica set dan load balancing.

Perbandingan dengan Penelitian Terdahulu:

Ghazi et al. (2023) [5] melaporkan MongoDB mampu menangani 50.000+ writes/sec pada cluster dengan 3

nodes. Hasil penelitian ini mengonfirmasi bahwa single-node deployment memiliki keterbatasan untuk

production-scale traffic, namun cukup efektif untuk small-to-medium scale deployment (SME/startup

environment).

Secara keseluruhan, sistem yang dikembangkan berhasil memenuhi objektif penelitian dengan:

1. Latensi monitoring < 200ms (60-75% lebih cepat dari HTTP polling [4])

2. Akurasi deteksi anomali 100% pada skenario pengujian

3. Response time alert ≤ 60 detik (10x lebih cepat dari SNMP polling [7])

4. Stabilitas sistem monitoring terjaga bahkan saat target server mengalami overload

Namun, penelitian ini juga mengidentifikasi keterbatasan yang perlu ditangani pada penelitian lanjutan,

terutama terkait scalability dan adaptive threshold mechanism.

V. KESIMPULAN

Penelitian ini berhasil merancang dan mengimplementasikan sistem monitoring trafik web real-time berbasis

Node.js dan Socket.IO yang dilengkapi dengan fitur deteksi anomali dan alerting otomatis. Berdasarkan hasil

pengujian yang telah dilakukan, dapat disimpulkan bahwa :

1. Latensi Real-Time Monitoring: Sistem berhasil mencapai latensi visualisasi di bawah 200 milidetik,

mengurangi latency hingga 60-75% dibandingkan metode HTTP polling konvensional. Hal ini

membuktikan efektivitas protokol WebSocket dalam menyediakan push-based data streaming.

2. Efisiensi Sumber Daya: Dengan spesifikasi minimal (2 CPU Cores, 2 GiB RAM), sistem mampu

menangani dan menyimpan lebih dari 387.000 log trafik dalam database MongoDB dengan konsumsi

storage hanya 17,48 MB, membuktikan efisiensi arsitektur yang dirancang.

3. Akurasi Deteksi Anomali: Fitur Static Thresholding berhasil mendeteksi 686 insiden dengan akurasi

100% pada skenario pengujian, termasuk lonjakan trafik ekstrem (9.019 req/min) dan error rate tinggi

(88,9%). Sistem memberikan notifikasi melalui Telegram dalam waktu maksimal 60 detik setelah

anomali terdeteksi.

4. Stabilitas pada Beban Tinggi: Pada stress testing dengan 1.000 koneksi konkuren, sistem monitoring

tetap stabil dan berhasil mendeteksi kondisi overload pada server target, membuktikan efektivitas

arsitektur decoupled yang diimplementasikan.

Keterbatasan Penelitian

Penelitian ini memiliki beberapa keterbatasan yang perlu diakui:

1. Data Sampling pada Beban Ekstrem: Pada throughput tinggi (>300 req/sec), sistem hanya mencatat

sekitar 46% dari total request yang masuk akibat bottleneck pada server target dan MongoDB write

limitation. Meskipun sampel ini tetap cukup untuk deteksi anomali, sistem belum optimal untuk full

audit trail pada kondisi beban puncak.

2. Static Threshold Limitation: Metode Static Thresholding yang digunakan efektif untuk mendeteksi

lonjakan mendadak, namun kurang sensitif terhadap anomali bertahap (slow ramp-up attack) dan

memerlukan tuning manual threshold yang bergantung pada baseline trafik normal.

3. Single Point of Failure: Deployment menggunakan single instance MongoDB tanpa replica set,

sehingga belum memiliki high availability guarantee untuk production environment.

4. Terbatas pada HTTP Metrics: Sistem saat ini hanya memonitor metrik berbasis HTTP request/response

(RPS, latency, error rate) tanpa visibility terhadap resource-level metrics (CPU, memory, disk I/O)

yang juga penting untuk root cause analysis.

Berdasarkan keterbatasan yang teridentifikasi, penelitian lanjutan dapat difokuskan pada:

Implementasi Adaptive Thresholding: Mengintegrasikan metode deteksi anomali berbasis statistical learning

(moving average, exponential smoothing) untuk meningkatkan sensitivitas deteksi terhadap anomali bertahap

dengan tetap mempertahankan efisien

UCAPAN TERIMA KASIH

Nugroho, Sistem Monitoring Real-Time …| 51

Penulis mengucapkan terima kasih kepada Universitas Mercu Buana Yogyakarta atas dukungan fasilitas

dan sarana prasarana yang diberikan selama proses penelitian ini. Terima kasih sebesar-besarnya juga penulis

sampaikan kepada Bapak Imam Suharjo, M.Cs. atas bimbingan, arahan teknis, serta motivasi yang diberikan

sehingga sistem monitoring ini dapat diselesaikan dengan baik. Penulis juga mengapresiasi seluruh pihak yang

telah memberikan bantuan selama tahap pengujian dan penyusunan naskah ini.

DAFTAR PUSTAKA

Journal Article

[1] M. Z. Al-Faiz and H. S. Ahmed, "Distributed Denial of Service (DDoS) attack detection and

mitigation using machine learning," Journal of Engineering Science and Technology, vol. 16, no. 1,

pp. 245-258, 2021.

[2] R. S. Saini and S. S. Khare, "Cyber security and anomaly detection in web traffic: A review,"

International Journal of Computer Science and Information Security, vol. 18, no. 5, pp. 110-117,

2020.

[3] S. A. Brown and G. Wilson, "Real-time web applications with Node.js and WebSocket," IEEE

Internet Computing, vol. 18, no. 4, pp. 12-19, 2019.

[4] B. Alzahrani, A. Alhumam, and K. Sahu, "Framework for Real-Time Monitoring and Alerting System

Using Node.js and WebSocket Protocol," IEEE Access, vol. 10, pp. 31245-31258, 2022. (Scopus Q1)

[5] M. A. Ghazi, S. Razzaq, and T. Althafari, "Performance Evaluation of NoSQL MongoDB for Real-

Time Data Streaming and Big Data Analytics," International Journal of Cloud Applications and

Computing, vol. 13, no. 1, pp. 45-62, 2023. (Scopus Q2)

[6] A. J. Khan, R. S. Singh, and M. Kumar, "Anomaly Detection in Web Traffic: A Statistical Approach

for Cyber Security in Modern Networks," Journal of Network and Computer Applications, vol. 201,

pp. 103-115, 2022. (Scopus Q1)

[7] R. Pratama, A. Nugroho, and B. Santoso, "Perbandingan Performansi Protokol SNMP dan REST API

untuk Monitoring Jaringan," Jurnal JEKIN, vol. 12, no. 2, pp. 55-62, 2020.

[8] D. Setiawan and E. Kurniawan, "Implementasi ELK Stack untuk Analisis Log Server Web,"

Indonesian Journal of Computing, vol. 6, no. 1, pp. 20-30, 2021.

[9] M. Gupta and R. Chandra, "Anomaly detection in time-series data using statistical methods," in 2022

International Conference on Data Science (ICDS), 2022, pp. 112-118.

[10] D. C. Montgomery, Introduction to Statistical Quality Control, 8th ed., 2019.

[11] I. Fette dan A. Melnikov, "The WebSocket Protocol," RFC 6455, 2011.

[12] S. Tilkov dan S. Vinoski, "Node.js: Using JavaScript to Build High-Performance Programs," IEEE

Internet Computing, 2021. (Scopus Q1)

[13] A. Nugraha, "Monitoring Trafik Jaringan Menggunakan Protokol SNMP dan MRTG," J. Tek. Info.,

vol. 5, no. 1, 2019.

[14] F. A. Ramadhan dan I. Suharjo, "Implementasi Bot Telegram sebagai Media Alerting System,"

JEKIN, vol. 16, no. 2, 2024.

[15] H. Saputra dan M. A. Latif, "Analisis Performa Real-Time Data Streaming Menggunakan Protokol

WebSocket," JEKIN, vol. 16, no. 2, 2024.

